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This work deals with the numerical solution of 2D inviscid and viscous 
(laminar) compressible flows in a DCA 8% cascade achieved by the 
finite volume method using a multistage Runge-Kutta method with 
Jameson's artificial dissipation on non-orthogonal structured grids. 
The results are discussed and compared with other similar ones and 
experiment. 
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Introduction 
The goal of the work was to achieve the experience and knowledge in the field of a numerical 
simulation of inviscid and viscous (laminar) compressible flows and their applications in the 
field of turbulence modelling etc. 

 

1. Mathematical model 

Considering a 2D flow of a viscous (laminar) compressible fluid, authors have used the system 
of the Navier-Stokes equations 

𝑊𝑡+F𝑥+G𝑦=R𝑥+S𝑦 

and for a simulation of an inviscid case η=0, the system of the Euler equations 

𝑊𝑡+F𝑥+G𝑦 = 0 

where 

W=(ρ,ρu,ρv,e)𝑇 ,
F=(ρu,ρu2+p,ρuv,(e+p) ⋅ 𝑢)𝑇 ,G=(ρv,ρuv,ρv2+p,(e+p) ⋅ 𝑣)𝑇 ,

R= �0,𝜏xx,τxy,uτxx+vτxy+λT𝑥�
𝑇

,S= �0,𝜏xy,τyy,uτxy+vτyy+λT𝑦�
𝑇
 

and the systems are closed by the equation of state in the following form 

p=(𝜇 − 1) �𝑒 −
1
2
𝜌(𝑢2+v2)� . 

All variables were considered dimensionless. 
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2. Numerical method and scheme 
The multistage Runge-Kutta method has been used in the form of a numerical scheme of the 
finite volume method on non-orthogonal structured grids of quadrilateral cells 𝐷ij. 

ResWij
(𝑟) =

1
𝐷ij
∑�𝐹�𝑘Δy𝑘 − 𝐺�𝑘Δx𝑘� 

𝑊ij
(0)=Wij

𝑛

𝑊ij
(r+1)=Wij

(0) − 𝛼𝑟ΔtResWij
(𝑟)+AD�𝑊ij

𝑛�,r=0,1,2

𝑊ij
n+1=Wij

(3)

 

𝛼0,1 = 0.5,α2 = 1 

The scheme was extended by including Jameson's artificial dissipation to improve the stability 
of the method. 

AD�𝑊ij
𝑛�=C1𝜓1�𝑊𝑖−1j

𝑛 − 2Wij
𝑛+Wi+1j

𝑛 �+C2𝜓2�𝑊ij−1
𝑛 − 2Wij

𝑛+Wij+1
𝑛 � 

where 

𝜓1 =
∣ 𝑝𝑖−1j

𝑛 − 2pij
𝑛+pi+1j

𝑛 ∣
∣ 𝑝𝑖−1j

𝑛 ∣ +∣ 𝑝ij
𝑛 ∣ +∣ 𝑝i+1j

𝑛 ∣
,𝜓2 =

∣ 𝑝ij−1
𝑛 − 2pij

𝑛+pij+1
𝑛 ∣

∣ 𝑝ij−1
𝑛 ∣ +∣ 𝑝ij

𝑛 ∣ +∣ 𝑝ij+1
𝑛 ∣

 

A convergence to the steady state was followed by log𝐿2residual defined by 

RES=�
1
𝑁
∑�

𝑊ij
n+1 −𝑊ij

𝑛

Δt
� 

where 𝑁is a number of all cells in the computational domain. 

 

 

3. Formulation of the problems 
The authors took in account numerical simulations of 2D inviscid and viscous compressible 
flows and both have been solved in a computational domain that represents a DCA 8% cascade 
and its outlines are shown in Fig. 1. A left and right outline respectively is an inlet and outlet of 
the domain respectively. A bottom and top outlines are divided into two straight lines that mean 
a free wall – a part of boundary where was applied periodicity condition – and a curve that 
means a bottom/top part of DCA 8% profile  – there were prescribed boundary conditions for a 
solid wall according to the mentioned type of flow (an inviscid or a viscous  flow). 

3.1 Boundary Conditions 

 Inlet: 𝜌1 = 1,𝑢1=M1cosα,v1=M1sinα, p1was extrapolated from the flow field and 𝑒1was 
calculated using the equation of state, where  𝛼 is angle of attack. 

 Outlet: 𝑝2was prescribed, 𝜌2,𝑢2,𝑣2were extrapolated from the flow field and 𝑒2was 
calculated using the equation of state, 
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Boundary conditions on the solid wall and periodicity conditions were implemented by using 
virtual cells adjoined from outside of computational domain and values of the variables inside 
of them were prescribed to obtain the desired effect. 

 Solid wall: velocity components were prescribed so that a sum of velocity vectors equals 
to zero u=v=0(a viscous flow) or equals to zero in their tangential component(u,v)𝑛�⃗ = 0(an 
inviscid flow). 

 Periodicity: a value of the variable in a cell at the bottom part of boundary corresponds 
to a value in a cell from the flow field near the top part boundary. 

Initial conditions were prescribed to comply with the inlet conditions. 

 

Fig. 1: Computational domain with boundary conditions applied (source: J. Trefilík) 
 
 
 

4. Numerical results 
The authors used two non-orthogonal structured grids with quadrilateral cells – 130 cells in the 
direction of the axis x and 50 cells (inviscid flows) and 120 cells (laminar flows) in the direction 
of the axis y (of the a straight line connecting inceptions of a low and an upper DCA 8% profile). 
Of course, in the case of viscous flows authors made such a convenient refinement of mesh near 
the solid walls for a better detection of viscosity influence.   

The authors took in account several values of inlet Mach and Reynolds numbers, and angles of 
attack to obtain results comparable with the experimental data and other similar numerical 
solution that would verify and satisfy a use of a software develevoped by the authors and used 
the multistage Runge-Kutta method. 

In the Figs. 2a and 4a we can see some results for 2D transonic flows of inviscid compressible 
fluid that have been compared to results by P. Pořízková – Figs. 2b and 4b – and In the Figs. 5a 
and 5b results for 2D viscous flows. A good agreement was found both with the results by P. 
Pořízková and with the experimets. 
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Fig. 2a: An inviscid compressible flow at 𝑀1 = 0.92,α=2°- multistage Runge-Kutta method, mesh: 
130x50 cells 

Fig. 2b: An inviscid compressible flow at 𝑀1 = 0.92,α=1.2°- MacCormack scheme, mesh: 150x50 
cells, author: P. Pořízková [3] 
 

 

 

 

 
 
Fig. 3: A compressible flow at 𝑀1 = 0.92,α=1.2- experiment of IT AS CR, source: [3] 

Fig. 4a: An  inviscid compressible flow at 𝑀1 = 1.12,α=0.5°- multistage Runge-Kutta method, mesh: 
130x50 cells 
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Fig. 4b: An inviscid compressible flow at 𝑀1 = 1.12,α=0°- composite scheme, mesh:150x30 cells, 
author: P. Pořízková [3] 
 

Fig. 5a: A laminar compressible flow at 𝑀1 = 1.1,Re=2.1 ⋅ 106,α=0°- multistage Runge-Kutta 
method, mesh: 170x120 cells 

Fig. 5b: A laminar compressible flow at 𝑀1 = 1.1,Re=2.1 ⋅ 106,α=0°- MacCormack scheme, mesh: 
150x30 cells, author: P. Pořízková [3] 
 

 

Conclusions 
This article presents some results achieved by using own software with the implemented FVM 
multistage Runge-Kutta method and added Jameson's artificial dissipation for a simulation of a 
2D transonic flow of an inviscid and laminar compressible fluid in the DCA  8% cascade. 
Numerical results shows a good agreement with other numerical results (e.g. P. Pořízková [3]) 
and experimental results carried out at the Institute of Thermodynamics AS CZ. 
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