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Numerical solution of 2D turbulent flows 

 

TREFILÍK Jiří, KOZEL Karel, PŘÍHODA Jaromír 

 

The work aims at developement of numerical methods for simulation of 

transonic turbulent flows in various configurations namely through the 

DCA 8% cascade and over a two-dimensional 18% thick circular-arc 

biconvex airfoil. Results of various numerical experiments modelling 

the viscous and inviscid flows are presented. For turbulence modelling 

a zero equation algebraic Baldwin-Lomax model along with two 

equations standard k-ω and modified (TNT) models were employed 

and the results of these calculations are compared. 
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Introduction 

In this work we aim to model subsonic and transonic turbulent flows in internal aerodynamics. 

The numerical solution is carried out by using a finite volume method based on MacCormack 

scheme. The turbulence phenomena is described by Reynolds averaged Navier-Stokes equations 

which are closed by 3 turbulence models. 

Mathematical models 

The two dimensional flow of a viscous compressible fluid is described by the systém of Navier 

Stokes equations. 
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with shear stresses given for the laminar flow by equations 
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This system is closed by the equation of state 



TREFILÍK Jiří, KOZEL Karel, PŘÍHODA Jaromír 

 

   2 21
p 1 e u v

2

 
      

          (5) 

In the above given equations, denotes density, p is pressure, T is temperature,  is dynamical 

viscosity, k is thermal conductivity coefficient, e is total energy per unit volume and u, v are 

components of velocity in the direction of axis x, y. The parameter  = 1.4 is the adiabatic 

exponent.  

By assuming that =0, we obtain the model of inviscid compressible flow which is represented 

by a system of so called Euler equations: 

𝑊𝑡 + 𝐹𝑥 + 𝐺𝑦 = 0         (6) 

For modelling of turbulent flow, the system of the RANS (Reynolds Averaged Navier-Stokes) 

equations closed by a turbulence model is used. The system of averaged Navier-Stokes 

equations is formally the same as above, but this time the flow parameters represent only mean 

values in the Favre sense, see Favre (1965). The shear stresses are given for the turbulent flows 

by equations 
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where t denotes the turbulent dynamic viscosity according to the Boussinesq hypothesis. 

The Reynolds number is defined by 
Re u L /  

and the Mach number by M = (q/a)
1/2

 where 

q = (u
2
 + v

2
)

1/2
 and a is the local speed of sound. All computations were realized using 

dimensionless variables with reference variables given by inflow values. The reference length L 

is given by the width of the computational domain. 

Turbulence models 

Baldwin-Lomax model 

Algebraic models are based on the model proposed for the boundary-layer flows by Cebeci and 

Smith. Baldwin-Lomax model is its modification applicable for general turbulent shear flows. 

The boundary layer is divided into two regions. In the inner (nearest to the wall) part, the 

turbulent viscosity is given by 

 
2 2 2
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         (8) 

where  is the vorticity, which is in the 2D flow determined by 
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The turbulent viscosity in the outer region is given by 

 

to cp w kC F F  
         (10) 
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where Ccp is a constant. Function Fw is determined by the relation 

 

w max maxF y F
          (11) 

 

for Fw being the maximum of the function 

 

DF yF 
          (12) 

 

and ymax the distance from the wall in which F(ymax) = Fmax holds and 
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The Baldwin-Lomax model (1978) contains following values of the constants:  = 0.4; A
+
 = 26; 

 = 0.0168; Ccp = 1.6; CKL = 0.3. 

 

k- model 

Two-equation models are based on transport equations for two characteristic scales of turbulent 

motion, mostly for the turbulent energy k and dissipation rate , often used in the form of 

specific dissipation rate  = /k. These characteristics are computed from transport equations. 

Turbulent viscosity is defined as 

 

*
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The standard Wilcox k-omega model is defined by the equations 
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where Pk =ijui/xj represents the production of turbulent energy. Model coefficients are given 

by values: 
* 1  ,   5/9,  = 3/40, * = 9/100,  = ½ and * = ½. 

 

Kok [8] suggested following modification of the standard form denoted as TNT variant of k-

model. 
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and 0.41  ,  = 3/40, * = 9/100, 
0.5 

, k 0.666 
. 

 

Numerical method 

The finite volume method was used on a structured grid of quadrilateral cells Dij. The Mac 

Cormack scheme in the cell centered form was applied in solving the system of RANS 

equations. The Jameson's artificial dissipation was added to increase the numerical stability. 

Formulation of the problem 

The outline of the computational domains is shown in figures 1 and 2:  

 

 

 

Fig. 1: test case DCA 8% 

 

Fig 2: test case AIRFOIL 
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In all the test cases we imposed (normalised) Dirichlet boundary condition on the inlet: 

ucos(α), vsin(α) and ρ, e and p such that they comply with uand v. 

The angle α was in general a nonzero value. 

On the outlet we prescribed only pressure p = p and the rest is extrapolated from the flow 

field. Further on there are three other types of boundary conditions: wall, symmetry axis and 

periodic boundary. These conditions are implemented by using virtual cells. Such cells adjoin 

from outside on the boundary cells and we prescribe values of unknowns inside of them to 

obtain the desired effect. 

Wall – viscous flow: velocity components prescribed so that the sum of velocity vectors equals 

zero, the rest of unknows is the same in both the virtual and the boundary cell. 

Wall – inviscid flow: velocity components prescribed  so that the sum of velocity vectors equals 

to zero in its tangential component, the rest of unknowns is the same. 

Symmetry axis: same as the wall condition for inviscid flow. 

Periodic boundary: taking two corresponding segments of boundary we prescribe into virtual 

cells of the first segment the values of unknowns contained in the boundary cells of the second 

and vice-versa. 

 

Initial conditions are prescribed so that they comply with the inlet conditions. 

Numerical results 

First two pictures show the flow around the airfoil. Then two different setups of a flow in the 

DCA cascade are examined and compared with an experiment. 

 

Fig 3: Compressible turbulent flow for Re = 10
7  

and Minf = 0.775 (basic variant of k-omega 

model) 
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Fig 4: Compressible turbulent flow for Re = 10
7  

and Minf = 0.775 (Baldwin-Lomax model) 
 

 

Fig 5: DCA cascade, viscous flow, M∞=0.98, =3.0
º
, Re = 10

7
, Baldwin-Lomax model, Mach 

number isolines 

 

Fig 6: DCA cascade, viscous flow, M∞=0.98, =2.8
º
, Re = 10

7
, k-model (TNT variant), 

Mach number isolines 
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Fig 7: Experimental data, Minf = 0.863, =0
 º
 

 

                Fig 8: DCA cascade, viscous flow, M∞=1.07, =2.3
º
, Re = 10

7
, k-model (Kok 

variant), Mach number isolines 

                          

                                        

Fig 9: Experimental data, Minf = 0.982, =0
º
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