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Vapor pressure of supercooled water 

 

KALOVÁ Jana, MAREŠ Radim 

 

Vapor pressure of supercooled water plays an important role in  

a great volume of the atmosphere, where water is colder than 0 °C. 

Meteorology is interested in properties of water at temperatures above 

-100 °C, but there are only experimental data in the region above        

-40 °C. We will discuss the selected formulas for vapor pressure of 

supercooled water and their applicability to extrapolation into the low 

temperatures region.       
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Introduction 

There is a number of equations for saturated vapor pressure (over water), examples of which can 

be found in [3] or [9]. The equations are often based on thermodynamic relations. Some 

equations fit either experimental data or only table data obtained from other, more complicated 

equations, or values based on the Maxwell´s rule, calculated from a thermodynamic potential.  

The equations may also differ in their usage. For technical purposes, the equation for saturated 

vapor pressure can be used for the calculation of a liquid-vapor interface. The equation for 

saturated vapor pressure is often used to determine the start value based on the thermodynamic 

potential and the Maxwell´s rule [5-7]. Given the particular usage, the range of validity of these 

equations for saturated vapor pressure is from 273.16 K to 647.096 K [6]. 

The relations for vapor pressure over water are used in meteorology and atmospheric physics 

which commonly operate with temperatures below 273 K. For example, minimum temperatures 

in the Antarctic winter stratosphere can be below 175 K [9].  

Liquid water thus is in a metastable state, and will sooner or later change into ice. A research of 

thermophysical properties of such ´supercooled´ water becomes more difficult with every 

decrease of the water temperature below 0 °C. In fact, with bulk water, it is not possible to 

measure properties below 235 K, although some properties, e.g. pc dramatically change with the 

dropping temperature.    

2. Survey of vapor pressure equations 

This short survey presents only some equations used as international institutional benchmarks 

for calculating saturated vapor pressure. A detailed survey can be found e.g. in [3] and [9]. 

Many equations are based on the Clausius-Clapeyron equation. Through its integration, we get  

T

a
cp ln ,                  (1) 

where c, a are constants.  

This formula was used by Clausius as early as in 1850 [3], and it has been used in many 

variations since. One of the generalizations results in the equation 
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bT

a
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
ln

.                 (2) 

Initially, the b value was used for the Kelvin-Celsius conversion, deciding on b=273.15. 

Nevertheless in order to reach the optimum equation for vapor pressure, it appeared to be 

suitable to look for the b value as another parameter using the least squares method.   

In 1844, Magnus measured temperatures in the range from -7 °C to 105 °C. To fit the data, he 

used the relation suggested by August in 1828. Magnus obtained the equation 
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 where t  is temperature in °C and 0p  is saturated vapor pressure at 0 °C in torr 

( 525.40 p mm of Hg). It is obvious that the equation (3) corresponds with the equation (2), 

and using the equation (3) we can easily calculate the coefficients cba ,, . The relation is: 
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which is a formula used by Magnus, and where we decided to choose bcae  .    

   

The advantage of (1) and (2) equations is an easy calculation of the inverse relation of the 

saturated vapor temperature and pressure: 

b
pc

a
T 




ln .                 (5) 

In order to fit the parameters to the larger range of temperatures and to generalize the equation 

even further, in 1979 Bögel [1], generalized the formula (4) by adding a quadratic component: 

dT

cTbT
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


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2

ln
.                 (6) 

This formula generalization (1) contains 4 fitting parameters a,b,c,d. The form is more 

complicated but the dependency )(pT  can be calculated. Providing apz  ln , by solving 

the quadratic equation we will reach 

c

cdzzbbz
T

2

)4)(( 2/12 
 . 

According to the sign and the temperature range, the physical solution can be chosen out of the 

two possible ones.  

The equation forms (4),(6) are frequently used. To present at least one, we can mention the 

equations of Buck [2] shown in Tab. 1.  
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Tab. 1 – Buck´s equations [2] 

Eq. Temperature interval Equations for saturation over water  

1w From -20 °C to 50 °C 
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2w From 0 °C to 50 °C 

 











T

T
Tp

88.238

368.17
exp1121.6)(  

3w From - 40 °C to 0 °C 
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4w From - 40 °C to 50 °C 
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The meteorological and air-conditioning communities recommend the formulation of Goff and 

Gratch (1946) [4] who integrated the Clausius-Clapeyron equation considering the departure  of 

water vapor from an ideal gas. They used the state equation in the quasi-virial form: 

RTZCpBpRTpv  2
.       

B and C  are the second and third virial coefficients and Z is compressibility factor. Goff and 

Gratch used the temperature dependence B and C and got the vapor pressure of pure liquid in 

the temperature range -50 °C to 102 °C: 
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ST  is defined as 373.16K – the steam point temperature, and wsp is the vapor pressure of pure 

liquid water at the steam-point temperature, hPapws 246.1013 .  

The Wagner-Pruss equation [6] is an example of equations fitting experimental data (and data 

taken from the IAPWS 95 equation of state using the Maxwell´s rule), and is an approved 

IAPWS standard. Its declared validity is for the temperature range from 273.16 K to 647.096 K.  
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where 
cT

T
1 , 096,647cT .  

3. Extrapolation into the supercooled range 

In order to calculate the saturated vapor pressure, the Clapeyron equation suggested in 

1834 can be used:   
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 ,                 (9) 

 

where s  is the change of molar entropy and lg vvv   is the change of the molar volume 

during sublimation, gv  is the molar volume of gas and lv  is the molar volume of liquid. 

Providing the second law of thermodynamics (2) is used, this formula can be written:   

)(

)(v

lv vvT

TL

dT

dp


 ,                (10) 

where )(v TL  is the enthalpy of vaporization and T is temperature in Kelvin. A very frequently 

used assumption says that the molar volume of water is much smaller than the molar volume of 

vapor, lv vv  . Another approximation can be used for the molar volume of vapor – the molar 

volume of vapor can be quite reliably taken from the ideal gas equation. We thus get the  

Clausius-Clapeyron equation [3,9] formulated in 1850:    
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where R is the molar gas constant, R=8.31447 J mol
-1

 K
-1

. This equation will sometimes be 

marked with the abbreviation CC in the following text. In order to integrate the Clausius- 

Clapeyron equation (10), we need to know the temperature dependence )(TLv . The equation 

for )(TLv  was published in [3,10]: 
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where 0,vL  is the enthalpy of vaporization in the triple point, 0T  is the temperature of the triple 

point, )(Tc p is the difference between molar heat capacities, vv  and lv  are molar volumes of 

vapor and liquid. Since the second integral in (12) is very small, even zero for a gas meeting the 

conditions of the ideal gas equation, we can approximately write  
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where lpvpp ccTc ,,)(  .         

In [9] the relation for vpc ,  (in J mol
-1

K
-1

) is stated as follows: 
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Combining (11) and (13) gradually results in: 
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Using this and the formula (14), lpc ,  can be calculated: 
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The calculation was run for the Goff and Gratch equation (7), the Buck equation 3w (Tab. 1), 

and the Wagner-Pruss equation  (8). The graph shows the results and the course of pc based on 

the theory of the second critical point [8]. 

 
Fig. 1: Calculated heat capacities pc based on the vapor pressure equations. 

Conclusion 

The graph clearly shows that equations used in meteorology (usually down to -100 °C) describe 

the course of pc very inadequately. Thus using them for very low temperatures is very 

improper. The Wagner-Pruss equation shows better results, although its validity is declared only 

for temperatures above 273.16 K, its extrapolation into minus temperatures brings sufficiently 

good results (see also [8]). There are new equations that present a better model of the pc course 

in the supercooled range [8, 9], but they are not commonly used yet mainly because they are 

complicated and meteorologists stand their ground concerning the traditional equations.  
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