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The article deals with a numerical simulation of inviscid and viscous  
(laminar) compressible flows in a GAMM channel, its 3D modification  
and a DCA 8% cascade. The results are discussed and compared with  
other similar ones and experiment. A multistage Runge-Kutta method  
and  a  Lax-Wendroff  scheme  (FVM)  with  Jameson's  artificial  
dissipation were applied on non-orthogonal structured grids.
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Introduction

The goal of the work is to use and verify the experience and knowledge obtained by the solution 
of previous, simplier problems of 2D flows for the solution more difficult problems of 2D or 3D 
flows (e.g. 3D flows around airfoils – a 3D modification of the GAMM channel called Swept  
Wing). Especially then the obtained knowledge of the problems of the inlet boundary conditions 
that  were verified in the previous works have been used for the solution of these and next  
problems.

1. Mathematical model

The authors have used a system of the Euler equations for a 2D and 3D inviscid compressible  
flow

W t +Fx +G y=0

and

W t +Fx +G y +H z=0,

where (conservative vectors are written for the 3D case, components containing a velocity w  
in the direction of axis z  are neglected in the 2D case)

W=[
ρ
ρu
ρv
ρw
e

] , F=[
ρu

ρu2 +p
ρuv
ρuw

(e+p )u
] , G= [

ρv
ρuv

ρv 2 +p
ρvw

(e+p ) v
] , H=[

ρw
ρuw
ρvw

ρw2 +p
(e+p )w

].
And a system of the Navier-Stokes equations was used for a 2D laminar compressible flow

W t +Fx +G y =Rx +S y

where

R= (0, τ xx ,τ xy ,uτ xx +vτ xy+λT x )
T , S=(0, τ xy ,τ yy ,uτ xy +vτ yy+λT y )

T .
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The  systems,  whose  variables  are  considered  dimensionless,  are  closed  by  semi-empirical 
equations (e.g. Fourier law) and the equation of state in the following form

p= (μ−1) [e−1
2

ρ (u2 +v2 )],  alternatively p= (μ−1) [e−1
2

ρ (u2 +v2 +w2 )] .

2. Numerical method and schemes

The numerical solution of all the flows considered was obtained by the multistage Runge-Kutta 
method (RK, here is written for the 3D inviscid case)

Res W i,j,k
( r )

=
1
μ ( Di,j,k )

∑ ( F̃ ,G̃ , H̃ )i,j,k,l⋅⃗ni,j,k,l
0 ΔSi,j,k,l ,

W i,j,k
( 0) =W i,j,k

n ,

W i,j,k
( r+1 )=W i,j,k

( 0 )
−αr ΔtRes W i,j,k

( r ) +AD (W i,j,k
n ) , r=0,1,2

W
i,j,k
n= 1=W

i,j,k
( 3 )

α0,1=0 . 5 ,α 2=1

and Lax-Wendroff scheme (a predictor-corrector form by Richtmyer is shown for the 2D 
inviscid cases, LW)

W i,j
n+ 1/2 =W i,j

n −
1
2

Δt
μ ( Di,j)

∑ ( F̃ i,j,l
n Δy l−G̃i,j,l

n Δxl )+
ε
4 ∑ (W l

n−W i,j
n ) ,

W i,j
n+ 1=W i,j

n −
1
2

Δt
μ ( Di,j)

∑ ( F̃ i,j,l
n+ 1/2 Δy l−G̃i,j,l

n+ 1/2 Δxl )+AD (W i,j
n )

of the finite volume methods on non-orthogonal structured grids of the quadrangular (2D) and 
hexahedral (3D) cells.

Each scheme was extended by including Jameson's artificial dissipation (here is written for the 
2D cases, a 3D version is simply extended taking the third components into consideration) to 
improve the stability of the method

AD (W ij
n )=C

1
ψ

1 (W i−1j
n −2W

ij
n +W

i+1j
n )+C

2
ψ

2 (W ij−1
n −2W

ij
n +W

ij+1
n )

where

ψ1=
∣pi−1j

n −2pij
n +pi+1j

n ∣

∣pi−1j
n ∣+∣pij

n∣+∣pi+1j
n ∣

, ψ2=
∣pij−1

n −2pij
n +pij+1

n ∣

∣pij−1
n ∣+∣pij

n∣+∣pij+ 1
n ∣

.

3. Formulation of the problems

The authors took in account the GAMM channel, 3D extension of the GAMM channel that was 
called by the authors Swept Wing (a relative thickness of the wing was changed between 4% and 
10%) and the DCA 8% cascade. The outlines of all the computational domains are shown in 
Figs. 1 – 3.  An inlet and outlet are always situated on the left and the right hand side of the  
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domain  respectively.  Other  outlines  or  surfaces  mean  solid  walls  or  free  walls  –  parts  of 
boundary where periodicity condition was applied.

Fig. 1: GAMM channel

Fig. 2: 3D extension of the GAMM channel, called Swept Wing

Fig. 3: DCA 8% cascade

3.1 Boundary Conditions

Inlet: ρ1=1,u1=M 1 cosα,v1 =M 1sin α, w1 = 0, p1  was extrapolated from the flow field and 

e1  was calculated using the equation of state, where  α  is angle of attack that is zero for flows 

in GAMM channel and Swept Wing.

Outlet: p2  was prescribed, ρ2, ,u2, ,v 2 ,w2  were extrapolated from the flow field and e2  was 

calculated using the equation of state,

The boundary conditions on the solid wall and the periodicity conditions were implemented by 
using  virtual  cells  adjoined  from  outside  of  the  computational  domain  and  values  of  the 
variables inside of them were prescribed to obtain the desired effect.

Solid wall:  velocity components were prescribed so that a sum of velocity vectors equals to 
zero u=v=w= 0  (a viscous flow) or equals to zero in their tangential component (u,v,w ) n⃗=0
(an inviscid flow).

Periodicity:  a value of the variable in a cell at the bottom part of boundary corresponds to a 
value in a cell from the flow field near the top part boundary.

Initial conditions were prescribed to comply with the inlet conditions.
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4. Numerical results

The authors used two types of non-orthogonal structured grids of quadrilateral or hexahedral 
cells, the mesh of first type had a constant resolution and in the second case the mesh was  
thickened along the walls, i.e.  a convenient refinement of the mesh near the solid walls was 
made for the better detection of viscosity influence (see Figs. 4 – 5).

Fig.  4: Sketches  of  the  grids  for  the  GAMM channel  (left)  and  the  Swept  Wing  (right)  –  the  used 
resolutions 150x50 cells and 110x30x10 cells respectively

Fig. 5: Sketches of two grids for the DCA 8% cascade – the used resolutions 130x50 cells (inviscid flow, 
left) and 170x120 cells (laminar flow, right)

The authors took in account several values of inlet Mach and Reynolds numbers, and angles of  
attack to obtain numerical results of a subsonic and transonic flow, which were comparable with 
the experimental data and other similar numerical solution for the verification and satisfaction 
of the use of a software developed by the authors that used the multistage Runge-Kutta method 
and/or Lax-Wendroff scheme in the Richtmyer's predictor-corrector form.

In the Figs. 6 – 9, you can see some results for 2D inviscid and laminar compressible transonic  

flows in the GAMM channel at the inlet Mach number M1=0 .675  and M1=0 .675 ,R1=106  

in the laminar case. The largest maximum Mach number was reached (ca. Mmax=1 .4 ), when 

LW scheme was used. But otherwise the results obtained by LW and RK are comparable both 
each other and with the results by J. Fürst [5] that were chosen for the comparison. 

The Mach number isolines for the 3D inviscid compressible flow are shown in the Figs. 10 and 
11.  Smaller  values of Mach number were obtained in the comparison with the results by J. 
Holman [5] and the Zierep singularity was not reached due to a smaller grid resolution.

Inviscid and laminar compressible transonic flows in the DCA 8% cascede, that are presented in 
the Figs. 12 – 17, were compared to results by P. Pořízková – Figs. 15 and 17 – and with the 
experiment (carried out by R. Dvořák at the Institute of Thermodynamics AS CZ, [1]) – Fig. 13. 
A good agreement was found both with the results by P. Pořízková and with the experimets.
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Fig. 6: Inviscid compressible flow in the GAMM channel, LW scheme, Mach number isolines,

M1=0 .675

Fig. 7: Inviscid compressible flow in the GAMM channel, RK scheme, Mach number isolines, 

M1=0 .675

Fig. 8: Inviscid compressible flow in the GAMM channel, WLSQR scheme, Mach number isolines, 

M1=0 .675 , author: Fürst [5]

Fig. 9: Laminar compressible flow in the GAMM channel, LW scheme, Mach number isolines,

M1=0 .65 ,R1=106
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Fig. 10: Inviscid compressible flow in the Swept Wing, RK scheme, Mach number isolines, M1=0 .675

Fig. 11: Inviscid compressible flow in the Swept Wing (mesh: 130x30x30 cells), WLSQR scheme, Mach 

number isolines, M1=0 .675 , author: Holman [5]

Fig. 12: Inviscid compressible flow in the DCA 8% cascade, RK scheme, Mach number isolines,

M1=0.92 , α=2°
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Fig. 13: Compressible flow in the DCA 8% cascade, experiment IT CAS CR, Mach number isolines, 

M1=0.863 ,α=0° , author: R. Dvořák [1]

Fig. 14: Inviscid compressible flow in the DCA 8% cascade, RK scheme, Mach number isolines,

M1=1 .12 , α=0.5°

Fig. 15: Inviscid compressible flow in the DCA 8% cascade (mesh: 150x30 cells), a composite scheme, 

Mach number isolines, M1=1.12 ,α= 0° , author: P. Pořízková [6]

Fig. 16: 
Laminar compressible flow in the DCA 8% cascade, RK scheme, Mach number isolines, 

M1=1 .1 ,Re=2.1⋅106, α=0°

Fig. 17: Laminar compressible flow in the DCA 8% cascade (mesh: 150x30 cells), MacCormack scheme, 

Mach number isolines, M1=1 .1 ,Re=2.1⋅106, α=0°  , author: P. Pořízková [6]
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Conclusion

The work presents some numerical results of a 2D and 3D subsonic and transonic flow of an  
inviscid  and  viscous  (laminar)  compressible  fluid  in  the  GAMM  channel  and  its  3D 
modification Swept Wing, and in the DCA 8% cascade that were achieved by using authors' 
software with the implemented FVM multistage Runge-Kutta method and the added Jameson's 
artificial  dissipation.  The numerical  results  shows the good agreement  with other numerical 
results  (e.g.  J.  Holman  [5]  or  P.  Pořízková [6])  and experimental  results  carried out  at  the 
Institute of Thermodynamics AS CZ ([1]).
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