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This study deals with the numerical solution of a 2D unsteady flow of a 
compressible viscous fluid in a channel for low inlet airflow velocity. 
The flow is described by the system of Navier-Stokes equations. The 
unsteadiness of the flow is caused by a prescribed periodic motion of a 
part of the channel wall, nearly closing the channel during 
oscillations. The channel is a simplified model of the glottal space in 
the human vocal tract. 
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Introduction 
In current challenging question is a mathematical and physical description of the mechanism for 
transforming the airflow energy in human vocal tract (convergent channel) into the acoustic 
energy representing the voice source in humans.  

The voice source signal travels from the glottis to the mouth, exciting the acoustic supraglottal 
spaces, and becomes modified by acoustic resonance properties of the vocal tract. In reality, the 
airflow coming from the lungs causes self-oscillations of the vocal folds, and the glottis 
completely closes in normal phonation regimes, generating acoustic pressure fluctuations. In 
this study, the periodic changes of the channel cross-section are prescribed; the channel is 
harmonically opening and nearly closing in the narrowest cross-section of the channel as a first 
approximation of reality, making the investigation of the airflow field in the glottal region 
possible. For phonation of vowels, the volume flow rate in the vocal tract is in the range 0.07-
0.85 l∙s-1 i.e. the airflow velocity in the trachea approximately in the range of 0.3-5.2 m∙s-1 
taking into account the tracheal diameter in humans in the range 14.5-17.6 mm [1]. 

Goal of this work is numerical simulation of compressible viscous flow in 2D convergent 
channel which involves attributes of real flow causing acoustic perturbations as is “Coandă 
phenomenon” (the tendency of a fluid jet to be attracted to a nearby surface), vortex convection 
and diffusion, jet flapping etc. along with lower call on computer time, due to later extension in 
3D channel flow.  

2. Mathematical model 

To describe the unsteady laminar flow of a compressible viscous fluid in a channel, the 2D 
system of Navier-Stokes equations was considered as the first mathematical model. The Navier-
Stokes equations were transformed to non-dimensional form. The reference dimensional 
variables are inflow variables (marked with the infinity subscript): the speed of sound c∞=343 
m∙s-1, density  ρ∞=1.225 kg∙m-3, temperature T∞=292.75 K, dynamic viscosity η∞=18∙10-6 Pa∙s  
and a reference length Lr=0.02 m. The system of Navier-Stokes equations is expressed in non-
dimensional conservative form [2] as:  
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W  is the vector of conservative variables W=[ρ, ρu, ρv, e]T where ρ denotes density, u and v are 
the components of the velocity vector and e is the total energy per unit volume. F and G are the 
vectors of inviscid fluxes and R, S are the vectors of viscous fluxes. The static pressure p in F 
and G is expressed by the state equation p=(κ-1)[e-ρ/2 (u2+v2)], where κ=1.4 is the ratio of 
specific heats. General Reynolds number in (1) is computed from reference variables Re= ρ∞ c∞ 
Lr /η∞. The non-dimensional dynamic viscosity in the dissipative terms is a function of 
temperature in the form η=(T/T∞)3/4. 

3. Computational domain and boundary conditions 

The bounded computational domain D used for the numerical solution of flow fields in the 
channel is shown in Fig. 1.  The upper and the lower boundaries are the channel walls. A part of 
the walls changes its shape between the points A and B according to a given function of time 
and axial coordinate. The gap width (in point C) was oscillating between the minimum gmin=0.4 
mm and maximum gmax=2.8 mm. 

 
Fig. 1: Computational domain D. 

The boundary conditions are considered in the following formulation: 

• Upstream conditions: u∞=M∞, v∞=0, ρ∞ =1, p∞ is extrapolated from D. 

• Downstream conditions: p2 = 1/κ and (ρ, ρu, ρv) are extrapolated from D. 

• Flow on the wall: (u, v) = (uwall, vwall) and  ∂T/∂n=0 (T=κ p/ρ). 

The general Reynolds number in (1) is multiply with non-dimensional value H M∞ represents 
kinematic viscosity scale and for computation of the real problem inlet Reynolds number 
Re∞=ρ∞ c∞ M∞Lr H/η∞ is used. 

4. Numerical solution 

The numerical solution uses finite volume method (FVM) in cell centred form on the grid of 
quadrilateral cells. In the time-changing domain, the integral form of FVM is derived using the 
ALE formulation. The ALE method defines homomorphic mapping of the reference domain 
Dt=0 at initial time t=0 to a domain Dt at t > 0 [3]. 

The explicit predictor-corrector MacCormack (MC) scheme in the domain with a moving grid 
of quadrilateral cells is used. The scheme is the 2nd order accurate in time and space [4]. 

2



Numerical solutions of unsteady flow in convergent channel 

To stabilize computation the Jameson artificial dissipation is added to the MC scheme [5]. Since 
the artificial dissipation term is of third order, the overall accuracy of the scheme is of second 
order.  

The grid used in the channel has successive refinement cells near the wall see Fig. 2. The 
minimum cell size in y-direction is ∆ymin≈1/Re1/2 to capture the boundary layer effects.  

 

 

 

 

 

 

 

 

  
Fig. 2: Grid of quadrilateral cells in narrowest part of domain D at the middle position of the gap width - 
detail. ∆ymin = 0.0005 (0.01 mm). 

3. Numerical results 
The steady numerical results were obtained (using a specifically developed program) for the 
following input data:  

A) Uniform inflow Mach number M∞=0.012 (u∞=4.116 m∙s-1) at the inlet, atmospheric pressure 
p2=1/κ (102942 Pa) at the outlet, Reynolds number Re∞=4481 and furthermore for unsteady 
simulation the wall oscillation frequency was f=100 Hz. The computational domain contained 
450 x 100 cells in D. 

B) Parabolic profile of inflow Mach number M∞=0.012 at the inlet, atmospheric pressure 
p2=1/κ at the outlet, Reynolds number Re∞=4481. The computational domain contained 450 x 
100 cells in D. The parabolic profile was pre-computed in rectangular channel (H x L) with 
input data as in case A).  

The computation is carried out in two stages. First, a steady numerical solution is obtained, 
when the channel between points A and B has a rigid wall fixed in the middle position of the 
gap width. It is also called initial condition. This initial condition is used for the non-stationary 
simulation (see [6]).  

Fig. 3 shows the steady numerical solutions for uniform inflow input data (A) and parabolic 
profile input data (B). The maximum Mach number computed in domain was Mmax=0.177 (60.7  
m·s-1) in case (A) and Mmax=0.162 (55.6  m·s-1) in case (B). The pictures display non-symmetric 
flow developed behind the narrowest channel cross-section. Fig. 4 shows the convergences to 
the steady state solution computed using the L2 norm of momentum residuals (ρu) for both 
cases. The graphs indicate the non-stationary solution of initial condition which is caused 
probably by eddies separated in the un-movable glottal orifice and floating away. 
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     (A)  Mmax=0.177 (60.7  m·s-1) 
 
  
   
 
 
 
 
     (B) Mmax=0.162 (55.6  m·s-1) 
 
Fig. 3: The steady numerical solutions for uniform inflow input data (A) and parabolic profile input data 
(B). Mesh 450 x 100 cells in D. 
 

 
   (A)      (B) 
Fig. 4: The convergence to the steady state solution for uniform inflow input data (A) and parabolic 
profile input data (B). Mesh 450 x 100 cells in D. 

The non-stationary numerical simulation for uniform inflow input data computed in domain D 
with wall oscillation frequency f=100 Hz over the fifth cycle of the wall oscillation is presented 
in Fig. 5 showing the flow field in five time instants during one vibration period. Large eddies 
are developing in supraglottal spaces and the "Coandă effect" is apparent in the flow field 
pattern. The absolute maximum of Mach number Mmax=0.535 (183.5  m·s-1) in the flow field 
during period was achieved at time t=44.18 ms (g=1.0019 mm, opening phase) behind the 
narrowest channel cross-section. The mathematical model (1) of laminar flow used in the 
computation is debatable. For the first approximation, we supposed unformed turbulent flow at 
the inlet part of the channel. 
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Numerical solutions of unsteady flow in convergent channel 

  
  
  
 
 
 
    (a) t=40 ms, Mmax=0.159 (54.8  m·s-1) 
  
  
  
 
 
 
    (b) t=42.5 ms, Mmax=0.236 (80.9  m·s-1) 
  
  
  
 
 
    (c) t=45 ms, Mmax=0.370 (126  m·s-1) 
  
  
  
 
 
 
    (d) t=47.5 ms, Mmax=0.097 (33.3  m·s-1) 
  
  
  
 
 
 
    (e) t=50 ms, Mmax=0.160 (54.9 m·s-1) 
Fig. 5: The non-stationary numerical simulation for uniform inflow input data computed in domain D 
with wall oscillation frequency f=100 Hz over the fifth cycle of the wall oscillation. Mesh 450 x 100 cells 
in D. 

Conclusion 
The steady numerical results showed in Fig. 3 have similar flow field patterns but direction of 
the jet behind the gap is in opposite. Redirection of the jet was observed e.g. in [7], the jet 
direction is changing along with mesh configuration, modification of computational loop and  
channel prolongation at the inlet and outlet part of the channel. Maximal velocity in case A 
(uniform inflow) is larger by 9.25% than in case B (parabolic profile). The jet direction 
developed in the flow field of initial condition is appearing in non-stationary numerical 
simulation as shown in Fig. 4 (a, b, d, e) for case A (uniform inflow). 
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The numerical solution in the channel showed large vortex structures developed in the 
supraglottal space moving slowly downstream and decaying gradually. It was possible to detect 
the "Coandǎ phenomenon" in the computed flow field patterns. A similar generation of large-
scale vortices, vortex convection and diffusion, jet flapping, and general flow patterns were 
experimentally obtained in physical models of the vocal folds by using PIV (Particle Image 
Velocimetry) method in [8]. 
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