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THE INFLUENCE OF THE STATIONARY PARTS GEOMETRY
ON THE FAN PERFORMANCE PARAMETERS

HOFER Tomas

The aim of this paper is to summarise some of the experiences in the
fan design particularly in the influences of the geometry of the main
stationary parts on the fan performance in the aerodynamic and
acoustic point of view. The scope of the following text is mainly to give
some feedback from an industrial manufacturer to the scientific
support.
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Introduction

The last century ended up in the name of “the Bmvirent”. Besides the fact that many other
but environmental interests hide behind this magird all the industrial branches are
immensely pushed towards technologies as effi@eadt silent as possible. Regarding the fans
not only for industrial use, this leads to highlgvanced machines with enhanced blading
assuming the cutting edge technologies in prodactio

However, even if the fan stage is “state-of-th&-artd its efficiency exceeds 90%, the final
overall efficiency of the machine is obviously lawdue to energy dissipation caused by
stationary parts of the fan, which may also unnglyy cause unfavourable increase of the sound
power. Unfortunately, these two aspects, namelypdgramics and acoustics, often stand
against each other and one has to compromise anttibe

The intention if this paper is to shortly summargame of the followed aspects based on
decades of experiences, development and coopenaiibrscientists, experts and universities,
which hold ZVVZ, a. s. on the top of the fan protloie in the Czech Republic so far.

1. Inlet Geometry Impact

Considering the machine in the direction of thevflone should start the geometry discussion
with the fan inlet. The influence of the inlet gestny has two parts. One is the geometry of the
fan suction part itself (e.g. inlet chamber or finkeozzle), which is designed by the
manufacturer, while the other is a question ofalation, for which the project architect is
responsible. Apparently, both are equally importanpoor fan installation as e.g. a right angle
turning of the inlet duct of a fan with supposedabxnlet causes an unpredictable fan
performance reduction (e.g. Gronwoldt-Hesse 20])2 [1

An example of such an installation is shown on Eigrhere are two installation faults from the
aerodynamic point of view. It is very inconvenidatplace a diffuser directly on the suction

flange in any case (Fig. 1 on the left) as any fiisturbances develop in a decelerating flow.
The flow disturbances on the fan suction side are # occur in this case since a right angle
elbow precedes a rather short straight part ofding (Fig. 1 on the right). Being asked to
qualify the reason of the reduced air power of ¢bmpetitor’'s fan, one has to admit that the
problem was at least partially on the side of thejget. The quantification was obviously

impossible.
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Fig. 1: Poor installation of a centrifugal fan.

The above situation may have been helped usingitaifogal fan equipped with a proper inlet
chamber. However, the inlet chamber of poor desimses similar troubles. Fig. 2 shows a
case of centrifugal fan, where the energy dissipatiue to rather bad geometry of the inlet
chamber prevails and being dependent on the vglitsiinfluence on pressure coefficient and
efficiency increases with the flow coefficient. Rrssor Cyrus has shown in his works that in
the case of the centrifugal mid pressure fansritet chamber loss may be neglected for certain
ratios of its inlet and outlet area.
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Fig. 2: Poor inlet chamber geometry influence on fan pentorce.

Generally all the fans are extremely sensitivelaniblet geometry regardless whether axial or
radial. In the time ZVVZ started manufacturing ntbdow fans (axial fans with meridional
flow acceleration) their efficiency was about 79%astly thanks to the optimisation of the inlet
chamber these fans ended up with efficiencies aRt

Tab. 1 summarises the influence of the inlet charividet area A and of its aspect ratio a/b (all
dimensionless with respect to the impeller diamBjeon the mixed-flow fans with smaller hub
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to tip ratio. Reaching the higher efficiency memmttreasing the inlet chamber inlet area and its
conversion from a square into a rather narrow regéa

a/D [] bD[] | AD*[] | nmax[]

1.268 1.268 1.608 75%
0.887 1.577 1.399 83%
1.000 1.761 1.761 85%

Tab. 1: Influence of inlet chamber area and aspect ratieficiency.

Yet, the principal geometry of the inlet chambseit had to be optimised as well. Fig. 3 shows
the main difference being essentially the flexidrihe flow (original on the left, optimised on
the right).

Fig. 3: Main difference in geometry of the mixed-flow faintet chamber.

The aerodynamic regulation of the mixed-flow fams lalways been performed by generating
an angular momentum in front of the rotor usingtiiguide vanes (IGV) with mechanical flaps.

This was historically common mostly in the formerzeChoslovakia and East Germany

according to USakov et al. 1962 [2]. However, adioag to Boehle et al. 2004 [3] the classical

type of IGV consists of uncambered or slightly cangld profiles, the stagger of which can be
varied, although he found in his research that Math mechanical flaps are more convenient
from the aerodynamic point of view and induce Ipesssure losses especially if the knee is
closer to the IGV leading edge. The largest turringles can be than reached with small IGV
loss coefficients in the case of the IGV cascadénigathe longest flap.

Modern power plants though require higher volunmsvflwhich leads to axial-flow fans with
high flow rates and large areas of high efficienegulated by means of rotor blades variable
pitch. Professor Cyrus has aerodynamically optichizBe inlet chamber and the struts
supporting the casing hubs (Cyrus et al. 2012 pf]these fans thanks to which the inlet
chamber loss coefficient was decreased by appPéxn3average. The modification of the struts
also decreased the sound power level.

2. Stage Geometry Impact

The highest interest is obviously focused on tladliblg itself. Regarding the fans with axial-
flow acceleration, there are of course various aggines to the rotor blade design such as
controlled vortex design (Vad et al. 2008 [5]) ontrolled diffusion air-foils (Savic et a. 2005
[6]). However, the common free vortex design obraind stator air-foils based on the NACA
65 series with reinforced trailing edge is commomded in the process (e.g. Cyrus et al. 2012
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[4]). Most, if not all, of the stages designed bypfPCyrus reach the efficiencies higher than
90% enabling us to cover the most important parthef performance map with reasonable
combinations of fan size and rotational speed agvslon Fig. 4 for the example of axial fans
for power plants for efficiencies higher than 8086l #or density of 1.2kg/f
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Fig. 4: Performance map of some axial-flow fans for powants.

On the other hand, one has to deal with acoustitades which are more and more challenging
in every field of industry. The highest standardsvadays have the so called aero-acoustic wind
tunnels, which are currently becoming common farg\car factory.

An example of the specific sound power level disttion is shown on Fig. 5 — a). The

maximum of the sound power occurs on the bladeufeqy, which in this case was 400Hz.
Since the requirements are usually defined as Ad@ower it is convenient to make the blade
frequency as low as possible because the correatibtiie acoustic filter A grow getting further

from the frequency of 1000Hz (Fig. 5 — b), see N2099 [7]).
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b) acoustic filter A corrections
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The blade frequency is purely a function of thatiohal speed and of the rotor blades amount.
That leads to machines, which can manage the desieeodynamic parameters with low
revolutions per minute in combination with smab@nount of blades. There is a certain way of
manipulating the rotor blades amount. Yet, one rbestr in mind that changing the amount of
the rotor blades maintaining the blade row geometimilarity breaks the similarity of the
wheel (USakov et al. 1962 [2], Eck 1952 [8]).

Direct and simple decrease of the sound power lga®lin increasing the axial gap between
rotor and stator blade rows, which in contrary batavourable effect on the fan stability as
shown on Fig. 6 — a) for two different axial distas of one fifth and four fifths of the rotor
blade chord measured at the huk,)(CThe principle of the process from both aerodyicaas
well as acoustic point of view lies obviously iretdevelopment of the profile losses, namely
the wake and its interaction with the followingtstablade row.
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Fig. 6: Gap influence on stall margin.

A much more sophisticated approach focused on Howea mentioned principle offers the
consideration of the swept blades. A nice revievsweep in axial compressor design has been
given by Ji et al. 2005 [10]. However, the papegsdnot give much of an inspiration. Far more
inspiring is the paper of Roy et al. 2005 [11], @¥hgives a simple and efficient suggestion. The
studied fan had a hub to tip ratie0.5 and a decent diffusion factor distributionrgjahe blade
height that is 0.42 at the hub and 0.38 at theQigt of the four combinations of straight and
swept rotor and stator blades, the configuratiothefstraight rotor and swept stator blades gave
the most promising results from the acoustic pofntiew. The difference in noise level with
respect to the straight rotor and stator bladesesigned stagger anglewas more than 10dB.
From the physical point of view, this effect showlot lower much the efficiency and hence
particularises the further direction of attentioitharespect to the demands on manufacture. A
very favourable effect on aero-acoustics has bkeew:s also using forward skewed swept rotor
blades (see Cai et al. 2004 [12]) although the esipe manufacturing process and uneasy
usage in variable pitch fans greatly limits sucolution.
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In contrary to the mixed-flow fans, the fans witliakflow acceleration suffer from a
particularly undesirable tip clearance flow, whisha significant source of aerodynamic losses
as well as of noise. The tip gap is a necessargtagoiional condition especially in the case of
explosion-proof fan design. The tip leakage floveoalunfavourably influences the stall
evolution process as shown on Fig. 6 — b) for tifi@igint clearance sizes, which demonstrates
a typical distinction between the model laboratmwpdition and real on-site condition.

The simplest approach of controlling the tip leakdigw for improving the stall margin is a
suitable casing treatment, such as introducing\ggedgsee e.g. Lu et al. 2005 [14]). However,
the fans with variable pitch require a bit greateope of handling such as e.g. air-separator
(Nishioka et a. 2004 [15]) or endwall recirculati@trazisar et al. 2004 [16]).

3. Outlet Geometry Impact

Last but not the least important part of the fathes diffuser decreasing the mechanical energy
loss due to a sudden flow expansion described byl@Garnot equation and the connected
duct geometry.

The geometry of the diffuser has been under closdysis already for some decades in many
ways and branches. The numerous experiences yiéddad optimum jaw angle in terms of
friction losses and possible flow separation.

Should the fan be followed by an elbow, the separatone created behind the diffuser must
have an opportunity to close itself (Fig. 7 — hattlarea denotes the so called cone of Borda
vortices), otherwise the risk of instabilities paggation through the elbow impends. The
resulted pressure penalty may than bring the sy&tamppressive situation with an insufficient
power of the motor or worse with the fan fallingsitall. Unfortunately, the situation on the site
usually does not allow a straight duct long enoagthe fan outlet. Therefore, the fan designer
should also count with a reserve for this poss$ibiiuring the design process and demand the
complete information on the project.
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Fig. 7: Optimum outlet duct geometry.

In the case of axial fans driving a wind tunnelk tiffuser is mostly due to limited space
usually substituted by a geometrically more congiéd part, namely the tail-cone of the
appropriate shape, such as ogival. The lossescamd power of such a solution may obviously
be very advantageous.



The Influence of the Stationary Parts GeometryhenRan Performance Parameters

4. Reynolds Number Impact

Since the efficiency of any turbomachine is infloed by friction, which depends on Reynolds
number, a credible efficiency scaling method isdaeee Yet, besides the resistance, the
Reynolds number effects also the flow deviatiothimblade row.

Applying the approach of Ackeret published by Mimhéa 1948 [17] where appropriate has
been a longstanding practice in our factory. Thighud has been found empirically on water
turbine based on the idea of inefficiency beingeclily proportional to the friction facto,
which according to the pipe flow analogy with fully tuteat flow in a duct with hydraulically
smooth walls may be approximated by powered Regnolonber. On top, Ackeret considered
in his method the inertia losses as well.

Generally, a similar method of Stephenson 1953 & recommended for fans and gives a
little more moderate results than the method ofekek(see Fig. 8). However, this method has
based the evaluation of the Reynolds number infleeam efficiency of a turbomachine on the
von Karman approximation of the Darcy-Weisbachtifsic coefficientA derived for a flat plate
with a turbulent boundary layer.

Both above mentioned methods are empirical ance duitited. Nowadays, the friction factor
can be guantified more precisely solving the CalekrWhite equation (Colebrook et al. 1937
[20]) using the approximation of Goudar-Sonnad (Gouet al. 2008 [21]) for a full flowing
circular pipe. Hence, the new physically based ensial scaling method of Pelz et al. 2012 [22]
meant a promising breakthrough, which takes intooant also the influence of Reynolds
number on the flow and pressure coefficients andwshthe best validation against the
experimental data so far. Nonetheless, this metiods to overestimate the effect of Reynolds
number in the regions of negative gradient of teefggmance curve, which is obviously the
most important part and makes this method in padiazardous with respect to the allowed
deviations from the agreed operating points.

Fig. 8 shows the comparison of the scaling metlumfssidered for use in the design process.
Apparently the most modest method is the Stephemsord the most courageous the Pelz's
one. For the time being, the oldest method of Aekpresents a safe comprise.
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After all, it must be pointed out that the applioat of the above mentioned methods is
determined by the relative wall roughness and hera@ot be assumed for most of the
industrial applications, since the Reynolds numbeérthe models may already be in the
autonomous zone independent on Reynolds numbeiti{sedikuradse also known as Moody
chart on Fig. 9). Moreover, in most industrial catee relative roughness increases with time as
e.g. in the case of the induced draft fans, wheeebtade surfaces degrade due to the presence
of the abrasive particles in the flue gas.
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Fig. 9: Moody chart (Moody 1944 [18]).
Conclusions

The basic stationary parts of the fans produced\WwZ MACHINERY, a.s. have been
discussed with the focus on their geometry impawst tbe aerodynamic and acoustic
performance. The importance of the fan installagprality has been shown. The efficiency
scaling methods have been discussed. The atterfggdback of the manufacturer in terms of
experience with respect to research has been given.

List of Symbols

C [m] blade chord

D [m] rotor diameter/fan size

f [Hz] frequency

Ka [dB] acoustic filter A correction
L [m] length

Lw [dB] sound power level

Ap [Pa] fan total pressure drop

Q [m¥s] fan volume flow
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n [rpm] rotational speed
Re [-] Reynolds number
[-] efficiency
A 1, [ stagger angle, friction coefficient
v [-] hub to tip ratio
T [] tip clearance height to blade chord lengthratio
1) [-] flow coefficient
Y [-] pressure coefficient
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